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On the Numerical Construction of 
Ellipsoidal Wave Functions 

By F. M. Arscott, P. J. Taylor and R. V. M. Zahar 

Abstract. The ellipsoidal wave equation, which is the most general equation derived by 
separation of the Helmholtz equation in confocal coordinates, presents unusual computational 
difficulties, and its solutions, despite their importance for physical applications, have not 
hitherto been effectively computed. 

This paper describes a successful technique, which involves the solution of a four-term 
recursion and the simultaneous handling of two eigenparameters. 

1. Introduction. The ellipsoidal wave equation, or Lame wave equation, has been 
known in mathematical literature for a considerable time, certainly since 1926 when 
Ince [12] listed it among the equations derivable from the general second order linear 
differential equation with five regular singularities. More significantly, it is the 
equation which emerges when the technique of separation of variables is applied to 
the Helmholtz equation in ellipsoidal coordinates [3, 1.6]. Physically, therefore, its 
solution is a matter of considerable interest; there are applications, among others, to 
problems of scalar and electromagnetic scattering by an ellipsoid, and diffraction by 
an elliptic plate or through an elliptic aperture. 

The equation has been the subject of some fairly extensive theoretical analysis, 
and quite a lot is known about the general properties of its solutions; e.g., [2]. 
Remarkably, however, computed results are almost wholly lacking, and indeed the 
usual computational techniques which serve for most other special functions are 
simply not applicable; this is because of mathematical difficulties to be mentioned 
shortly. The only numerical results-or formulae which can give such results- 
hitherto published are in the form of perturbation series or asymptotic series, 
corresponding roughly to low frequency and high frequency approximations, respec- 
tively [1], [7], [10]. The purpose of this paper is to report on a general method for 
computing the eigenvalues and the solutions. 

There is an interesting parallel between this problem and the corresponding 
problem posed by Mathieu's equation; the latter was first formulated in 1868 and 
used in connection with an astronomical problem [15], [11]. Considerable progress 
was made regarding its theoretical solution, but it was not until some 60 years after 
Mathieu's original memoir that Ince accomplished the first systematic tabulation 
[13], [14]. For ellipsoidal wave functions, the corresponding gap has been similar; the 
greater problems of tabulation have been compensated by the availability of modern 
computing facilities. In fact, the difficulties are not so much computational as 
analytic; the limitation has been imposed not by any lack of speed or storage 
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facilities but simply by not knowing where to start. Indeed, for most of the 
calculations we shall describe, a relatively small computing aid like a COMMOD- 
ORE PET or an HP97 will suffice; full-scale computer facilities are helpful but not 
essential. 

2. The Ellipsoidal Wave Equation and Its Main Features. The ellipsoidal wave 
equation can be put into several forms, of which two are important for our present 
purpose and a third will be mentioned later, as it seems to offer an alternative line of 
attack. 

(a) The 'Jacobian' form is 

d2w 
(2.1) dz2 -(a+ bk2snz + qk4sn4z)w = 0, 

where the Jacobian elliptic function sn z = sn(z, k) has modulus k. 
A transformed version of this is important: we set 

(2.2) z = K+ iK'-iz', 

where K, K' are the usual quarter-periods, and obtain 

(2.3) dz2 {a' + b'k'2sn2(z', k') + q'k'4sn4(z' k')}w = 0, 

where k' = (1 - k2)1/2, a' = -a - b - q, b' = b + 2q, q' = -q. 
(b) The 'algebraic' form, which is obtained from (2.1) by setting t = sn2 z is 

d2w 1 d 
(2.4) t(t -l)(t -c) 

d 
+ 

I 
{ 3t2 -2(l + c)t + c} dw 

dt2 2 d 

+ (X + ,ut + yt2)w = 0. 

Here, for convenience, the parameters have been changed by setting 

(2.5) k-2 = c, a = -4k2X, b = -4y, q = -4y/k2. 

The 'trigonometric' form will be given and discussed in Section 8 below. 
Our objective is not the general solution of this equation huk th e. nfulmnJj1nI WI 

ellipsoidal wave functions, which are particular solutions characterized by boundary 
conditions or finiteness properties. These are given in the next section; now we pause 
to explain why this differential equation is both difficult and interesting. 

(i) A rough classification of second order ordinary linear equations can be made 
on the basis of the number and type of their singularities. The 'hypergeometric type' 
comprises those equations which have precisely three regular singularities, or can be 

. e ,! fnxo & s'j.iah. oa n.iiThariv ca, in wAicA two or more 
singularities coalesce. This type includes the equations of Bessel, Legendre, Laguerre, 
Jacobi, and many others, whose properties are now quite extensively known. 

The next level comprises equations of 'Heun type' which similarly are derivable 
from the general equation with four regular singularities. In this category fall the 
equations of Mathieu and Lame, the spheroidal and paraboloidal wave equations, 
and others; very much less is known about such equations and their solutions. 

The ellipsoidal wave equation, however, belongs to a higher type still, for in its 
algebraic form (2.4) it is seen to have three regular singularities (at t = 0, 1 and c) 
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and an irregular singularity at oo, which can only be obtained by confluence of two 
regular singularities. Thus (2.4) is a confluent case of the general equation with five 
regular singularities; it appears to be the first equation in this class to receive any 
detailed study. 

(ii) The classical method of solution in series provides an excellent means of 
investigating differential equations of hypergeometric type, for such a formal solu- 
tion can always be made to yield (possibly after some preliminary manipulation) a 
two-term recursion relation between successive coefficients, which is easily handled. 
For equations of Heun type, however, the recursion relation always involves at least 
three terms; such relations are far less tractable. It seems impossible to find series 
solutions in which the coefficients are given explicitly, and even their numerical 
computation proved-as already mentioned-beyond the power of 19th century 
mathematics. 

The situation is still worse with regard to the ellipsoidal wave equation, because 
series solutions are found always to involve at least a four-term recursion relation 
between the coefficients, so that even the rather involved methods which succeed for 
Heun type equations cannot be directly used. 

Another way of regarding this phenomenon is to say that the method of solution 
in series replaces a second order differential equation problem by a difference 
equation problem. In the case of hypergeometric type functions, the difference 
equation is first order; for Heun type equations it is of second order, but for the 
ellipsoidal wave equation it is of third order-thus, in principle, a harder problem 
than the original. 

(iii) For functions of hypergeometric type, great use is made of expressions for 
solutions as definite or contour integrals. For functions of Heun type, no such 
solutions have been found; instead, solutions can be shown to satisfy relatively 
simple Fredholm integral equations, and these are useful in investigation of proper- 
ties of solutions. For the ellipsoidal wave equation, however, there are no corre- 
sponding simple integral equations, and we have only certain 'quadratic' integral 
equations or two-dimensional linear equations. 

(iv) Finally, the ellipsoidal wave equation is a 'two-parameter' problem. In most 
applications of (2.1) or (2.4) the parameters q and k (or y and c) are known or have 
to be regarded as known; the former has a physical meaning such as frequency while 
the latter is a geometrical parameter. By contrast, the parameters a, b (or X, ji) are 
not physically significant, indeed they arise only from the process of separation. Our 
problem, generally, is to determine eigenvalues of these parameters, so that nontriv- 
ial solutions of the equation exist which satisfy the appropriate side conditions. 

Two-parameter problems are not unknown in connection with simpler equations, 
but in such problems one can generally dispose of the unknown parameters one at a 
time. No such device seems to be possible for the ellipsoidal wave equation; the two 
eigenparameters have to be handled as a pair. 

3. Ellipsoidal Wave Functions. Ellipsoidal wave functions are, by definition, 
solutions of (2.1) which are doubly-periodic (with periods 4K, 4iK') or, equivalently, 
solutions of (2.4) which are finite at the three finite singularities t = 0, 1 and c. 
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It is known [2] that these fall into eight types; as solutions of (2.1) they take the 
forms 

(3.1) (sn z)'(cn z)?(dn z)TF(z), 

where p, u, T =0 or 1 and F(z) is even, doubly-periodic with periods 2K, 2iK', and 
having singularities only at iK' and congruent points, hence an integral function of 
sn2 z. As solutions of (2.4) they take the form 

(3.2) tp 2(t-1)2(t-c) G(t), 

where G(t) is an integral function of t. 
However, the computational problems are essentially the same for all the eight 

types of functions, so we shall discuss only the simplest type, that for which 
p = a = T= 0. The modifications needed to deal with the remaining types will be 
given in Section 9, where the standard notation for these functions is also given. 

The eigenvalues a, b (or X, ,u) and corresponding eigenfunctions are known to 
form a 'triangularly infinite' set; for technical reasons they are denoted by 

(3 .3) a2m a b2mn a uelm 2(z ), (kA2n , etc.) 

or, more fully if necessary, 

(3.3a) a2mn(q, k), b2m (q, k), uelm (Z, q, k) (m(yc), etc.) 

where m = 0, 1,... ,n; n = 0,1,... to infinity. The indices n, m are related to the 
zeros of the eigenfunctions; uelmj(z) has precisely m zeros on the segment (0, K) 
and (n - m) zeros on (K, K + iK'); as a function of t, uelmn has m zeros on 
t E (0, 1) and (n - m) zeros on (1, c); these zeros are all simple. 

4. Known Numerical Information. (a) When q = 0 (-y = 0), the eigenvalues of b (or 
ji) are given by 

(4.1) b = 2n(2n + 1), 11 = -n(n + 1)2 

and, for given n, the eigenvalues of a (or X) are the roots of an algebraic equation of 
order n + 1; thus, for q = 0 (-y = 0) the eigenvalues of b(,u) are (n + 1)-fold, but the 
eigenvalues of a(X) are easily shown to be all simple. Regarded as an eigenvalue-pair, 
then, each pair (a, b) (or (X, ,u)) is simple. 

(b) For the lowest eigenvalue-pair, a perturbation solution is known, that is, series 
for ao(q), bo(q) and uelo(q) proceeding in powers of q; reference [1] gives these 
series to O(q2). For the next two eigenvalues of this type, the series have been 
computed only to O(q) and higher terms seem impossible to calculate explicitly; for 
higher eigenvalues, perturbation series have not been calculated at all. 

(c) However, asymptotic series for large I q are given in [7], valid for all 
eigenvalues; these provide a useful comparison with the eigenvalues computed by the 
method to be described in this paper, and in some cases yield starting-points for the 
iterative calculation. 

5. The Computational Procedure. Since we are seeking a solution of the form (3.1) 
or (3.2) with p = a = t = 0, we may assume F(z) in the form of a series in sn2 z, or 
G(t) as a series in t. For definiteness, we shall deal with Eq. (2.4) henceforth, since 
the manipulations do not involve the relatively unfamiliar formulae for elliptic 
functions. 
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Assuming the formal solution of (2.4) as 
00 

(5.1) w = ar tr 

0 

we obtain by substitution in (2.4) the recurrence system 

(5.2a) Xa0 + lca1 = 0, 

(5.2b) oia0 + {X - (1 + c)}a, + 3ca2 = 0, 

(5.3) yar + {jt + (r + 3/2)(r + 1)}ar+l 

+ {X -(1 + c)(r + 2)2}ar+2 + c(r + 5/2)(r + 3)ar+3 = 0, r 2 0. 

(If we adopt the convention that ar = 0 for r < 0, then (5.2a, b) agree with (5.3) for 
r = -2, - 1.) We also choose to normalize the solution w so that a0 = 1. 

By applying the classical theory of linear difference equations to the third order 
equation (5.3), it can be shown that it possesses three types of solutions: those with 

ar+1/ar asymptotic, as r -x oo, to 1, 1/c and -y/r2, respectively. We recall, 
however, that w is to be an integral function of t, so that the series in (5.1) has an 
infinite radius of convergence. Hence w must correspond to the solution of (5.3) for 
which ar+ I/ar - _y/r2 as r -x oo. This means that in comparison with the other 

solutions of (5.3), the sequence for {ar} associated with w is minimal (see Gautschi 
[9]) and that its computation by forward recurrence will be numerically unstable. 
However, it can be verified that the sufficient conditions stated in [16] for the 
convergence and numerical stability of backward recurrence are satisfied, so that for 
fixed y and ji the sequence {ar} can be computed by Miller's algorithm. That is, if 
for fixed X and ji we define the function of N, yr(N), by 

(5.4) XN = 1, XN+I = XN+2 = 0 

Xr -11/y[{jy + (r + 3/2)(r + 1)}Xr+l 

+ {A-(1 + c)(r + 2)2}Xr+2 + c(r + 5/2)(r + 3)Xr+3 

r=N-1,N-2,...,0, 

Yr(N) = Xr/XO, r = 0, 1,2, ....I 

then the yr(N) are estimates of ar in the sense that 

lim yr(N) = ar. 
N- oo 

Therefore, for any given X and ji, one can in principle compute the required solution 
{ar} of (5.3) to any desired accuracy by taking N sufficiently large. As a conse- 
quence, (5.2a, b) can be regarded as a system of algebraic equations for X and ji 
alone: 

(5.5a) F(X, ji, y) = Xa0 + 4ca1 = 0, 

(5.5b) G(X, , y) = ao + {X-(1 + c)}aj + 3ca2 = 0, 

and an iterative method can be employed to compute its roots. (The dependence of 
F, G on y arises, of course, from the dependence of a0, a1, a2 on y.) 
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Thus, the basic computational procedure can be described as follows: 
(i) A trial pair of values A(?), 1(O) is chosen and i is set to 0; 
(ii) A moderately large value of N is taken and estimates of a(i) are calculated by 

scheme (5.4); 
(iii) Eqs. (5.5) and an iterative rule are then used to obtain improved estimates 

X(i+ 1), (i+); step (ii) is then repeated with i replaced by i + 1 until a stage is 
reached when X('), j(i) and A(?+ 1), Mu(i+ 1) agree to within the required accuracy. 

In addition to (a) the selection of an iterative method for step (ii), two details in 
the above programme of operations remain to be settled: (b) the technique for 
choosing initial values V), t(), and (c) the value N to be taken in (5.4). We shall 
discuss each of these details in turn. 

(a) The simplest iterative method for improving the values of X and y is that of 
successive substitution, because once the a(i) are known, system (5.5) can be solved 
directly for the new X('+ 1), t(+l ). In this problem, however, the method may not 
enjoy the property of local convergence, and even if it does converge, it may do so 
extremely slowly. Better possibilities are offered by the two-dimensional secant 
method or by Newton's method. We choose to employ Newton's method because 
local convergence is assured, and because the amount of work per step is less than 
that in the secant method if the computations are suitably organized. Thus, we set 

A(i + ) = A(i) + 8 x(i) H(i+ 1) = y(i) + sil(i), 

where AA(i), Stt(i) are given by 

(5.6a) 3X(i)Fx(A(i) pk), y) + 3y(i)J (A(i), pfi), y) + F(XA(i), pii), ~y) 0o, 

(5.6b) 3X(i)G (X(') (i) y) + s1&G P(x('), I), y) + G(X('), , 7) = 0. 

In order to compute the derivatives of F, G with respect to X, t, one needs to 
compute the derivatives Pr = aar/aX and qr = aar/la8. By differentiation of (5.3), 
one finds that Pr and qr satisfy the inhomogeneous recurrence relations 

(5.7a) YPr + { + (r + 3/2)(r + l)}pr+I 

+ {X - (1 + c)(r + 2)2 }Pr+2 +c(r + 5j2)(r + 3)Pr+3 =-r+2 

(5.7b) yqr + {y + (r + 3/2)(r + l)}qr+l 

+ {A-(1 + c)(r + 2)2}qr+2 +c(r + 5/2)(r + 3)qr+3 = -ar+l. 

It can be demonstrated that the Pr and qr associated with w are the minimal solutions 
of (5.7a) and (5.7b), respectively. Further, their values pr(i) and qri) at any stage of the 
iteration can be computed in a numerically stable manner by backward recurrence 
using the inhomogeneous form of Miller's algorithm; that is, we solve (5.7a), (5.7b) 
for r = N-1, N-2,...,1 starting with the valuespr = q = 0 for r = N, N + 1, 
N + 2. 

(b) The second computational issue to be resolved is that of finding sufficiently 
good starting values A(?) and /L(?) for the procedure to work; because of the number 
and relative closeness of the eigenvalue-pairs it is necessary to have quite close 
estimates. Our procedure has been to compute along a pair of eigenvalue curves, 
starting from the values for y = 0. In this case, one sees from (5.3) that when , has 
the special value - n(n + '), the series can be truncated, so that ar = 0 for 
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r > n + 1. The condition on A is that the determinant of the first (n + 1) equations 
must vanish, i.e., an equation of degree (n + 1). Although it is not apparent from 
(5.2) and (5.3), the roots of the equation are all real, distinct and positive. These give 
starting points for the computation of the eigenvalue curves X(y), which are 
obtained by taking It= -n(n+ +), n =0,1,2,..., and XA- , m =0,1,...,n, as 
the zeros in increasing order of the determinantal equation. (For the particular 
values c-1 = 0.1, 0.3, 0.5, 0.7, 0.9 and for n s 30, these are derived easily from [5], 
with A = 4 ch in the notation of that reference.) 

An alternative starting point for such plotting of pairs of eigenvalue curves is 
provided by the asymptotic formulae for A, f, which can be easily obtained from the 
results in [7], and which are translated to the notation of this paper in Section 7. 

Once the values of A(-y), ti(y) have been computed for a given value of y, a first 
order continuity procedure can be employed to estimate the values corresponding to 
an augmented y + &y. That is, we define 

X(y + y)A(y) + AA, ,(y + Ay) = ,(y) + A/, 
where AX, AA are given by 

(5.8a) AAFjX((y), p(y), y) + AAFJ(X((y), pt(y), y) 

+A-yF,(X(-y), t(y), -y) = O, 

(5.8b) A/AGA(X(y), tt(y), y) + ApG,(X(y), p,(y), y) 

+AyG,(A(y), p(y), y) = 0. 

The derivatives Sr = aar/ay required in these expressions satisfy the recurrence 
relation 

(5.9) Ysr ? {, + (r + 3/2)(r + 1)}Sr+l + {A - (1 + c)(r + 2)2}Sr+2 

+c(r + 5/2)(r + 3)Sr+3 = 'r 

and, as before, can be computed by backward recurrence starting with Sr= 0 for 
r=N,N+ 1,N+2. 

(c) The final computational detail to be discussed is the choice of N to be taken in 
(5.4). By straightforward algebra, it can be shown, as in [16], that the relative error E 
in the computation of ar satisfies 

(5.10) E N+l - r 
ar 13N+1I 

as N -x o, where fPr is the solution of (5.3) for which Ir+ /I/Br 
1 I/c when I c I > 1. 

Consequently, an estimate for the required N can be obtained by replacing each 
expression in (5.10) by its asymptotic form (assuming that both N and r are large 
enough). Thus, an approximate value is the smallest N for which 

/ (r- 1)! 2 
CN-r+1 1 . 

where a is the desired number of significant decimal figures. 

6. Some Observations on the Computational Procedure. In the course of carrying 
out the computations described in Section 5, it proved necessary at certain points to 
take a larger value of N than expected, or to make an exceptionally good choice of A 
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and y. The phenomenon is due, apparently, to instability in the general recursion 
formula (5.3) which arises for certain critical values of X, iu, y, c in the following 
manner: 

[A similar difficulty arises in connection with the three-term recursion involved in 
the computation of Mathieu functions, and is discussed in [6]: the situation in the 
present case is qualitatively similar but quantitatively much harder to analyze.] 

Let us write 
ar+ I 

(6.1) Vr ar 
r 

Then, as we remarked in Section 5, the asymptotic behavior of vr, as r - oo, is 
1 -2 

Vr'1, - or -yr; 
C 

our computational procedure is designed to pick out the minimal solution and follow 
it backwards. 

The recursion (5.3) may be written 

(6.2) ArVrVr_lVr-2 + BrVrilVr-2 + CrVr-2 + Y O , 

whereAr =c(r + ')(r + 1), Br = X-(I + c)r2, Cr = +(r-i)(r-l).Ifvrwere 
(locally) approximately constant, say vr = v, then (6.2) would become 
(6.3) Arv3 +Brv2 rV + y = 0, 
which is, of course, the characteristic equation of the difference equation (5.3) 
assuming constant coefficients. In general, we can expect the backward recursion 
process to be stable so long as the two numerically smaller roots of (6.3) are 
significantly different in modulus so that the minimal solution should not be 
contaminated by the next solution to it. 

For r large, the equation (6.3) becomes 

(6.4) cv -( + c)v2 + v = 0, 

with roots 1, c 1, 0. It is easy to see that, as r decreases from oo, the roots of (6.3) 
originally at 0 and c-1 each move to the left and so may eventually become about 
equal in magnitude with opposite signs. Clearly one situation in which this may 
occur is when Cr 0, i.e., ,u -(r - )(r - 1). For the ranges of values of A, ft, y 
occurring in the graphs shown, it is indeed found that the computational process 
becomes unduly sensitive just for such values of It, namely 0, - 1.5, -5, - 10.5, 
- 18, -27.5,.... That is not to say, of course, that sensitivity can be expected only 
at such points, but experimentally these are the only places where it occurs in the 
computations here described. 

One method of avoiding this sensitivity is to adapt the simple device of 'centering', 
analogous to that described in [6]. That is to say, we choose an integer M < N, take 
aN = 1, aN+1 = aN+2 = 0, and use (5.3) with r N - 1, N - 2,. ..,M to compute 
the ar back to aM. We then use (5.2a, b) and (5.3) with r = 0, 1,. . ,M - 3, leaving 
a0 temporarily unspecified; this gives the coefficients a0 to aM determined up to a 
constant factor; then we choose this factor so that the two values of aM agree. We 
are then left with the equations (5.3) for which r = M - 2 and r = M - 1, so far 
unused; since we have now computed all the coefficients ar these two equations can 
be solved to give the next values of X and ,u. This process can be designated as 
'centered' on the integer M; the procedure described in Section 5 is, of course, 
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centered on M = 0. Although only approximate, this method of centering has 
proved to be adequate for the eigenvalues discussed in this article. 

The necessity of choosing exceptionally good values of X and y become more 
marked as n and m increase, and numerical tests indicated that this difficulty is, for 
the most part, independent of the choice of N, if N is large enough. Indeed, it 
appears that the local regions of convergence of Newton's method simply become 
smaller as n and m increase. It seems advisable, therefore, as mentioned in [17], to 
modify the recurrences by injecting another parameter into the numerical procedure. 
For this purpose, we choose to express the formal solution (5.1) about the generic 
point to in the complex plane 

00 

(6.5) w = ar(t - to)r 
0 

thus obtaining, in place of (5.2), (5.3), the recurrence system 

(6.6) Arar + Brar+? + Crar+2 + Drar+3 + Erar+4 = 0, r 2 0, 

where 
Ar = 2y, 

Br = 2(2yto + 1) + (2r + 3)(r + 1), 

(6.7) Cr 2(yt2 + + ?) + 2(r + 2)2(3to - 1 -c), 

Dr (3to - 2(1 + c)to + c)(r + 3)(2r + 5), 

Er 2to(to - l(to - c)(r + 3)(r + 4). 
(The first two relations in the recurrence are merely (6.6) with r = -2, - 1, taking 

-2 = a-1 = 0.) 
Upon experimentation, it was found that with to = 1, and the other values of the 

parameters quoted here, the Newton method converged without further difficulty. 
(This change corresponds, in fact to assuming a solution of (2.1) in the form of a 
series containing even powers of cn z rather than of sn z.) 

7. Results. As an indication of the results* computed by the method described 
in Sections 5 and 6, we attach Figures 1 and 2 showing the first six eigenvalue 
curves in the case c = 2, that is to say, for the pairs (n, m) = (0,0), (1,0), (1, 1), 
(2,0), (2, 1), (2,2). In the computations, Ay = 4 was used throughout. 

The corresponding values for y = 0 are 
n m X 
0 0 0 0 

1 0 1(3 - 3) = 0.6340 -1.5 

1 1 2(3 + 3) = 2.3660 - 1.5 

2 0 (5 - 3) = 1.3944 -5 

2 1 5 -5 

2 2 (5 + 3)= 8.6054 -5 

* Note. In private communication with the first author, Professor L. Fox of the Oxford University 
Computing Laboratory has indicated that a two-parameter shooting method, using matrix techniques, 
yields results which agree with those of the authors. He observed similar difficulties to ours in the 
sensitive areas mentioned above. 
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The asymptotic series are as follows: 

(a) As y -x oc 

X A -r A -B + 0(Y- 1/2), 
t - --y + C -r + D + O(.y-2) 

where 

A 2 2F2b, B =(b2 -4F2ab +9/16), 

(7.1) C=2(bF2+a), D= la2 + 1b2 + 3/16, 

with a, b depending on the integers n, m: 

(7.2) a = n -m + 1 , b = m + 1 

(b) For the case y -x , we set y' = -y, then as y' -x cc, 

(7.3) X = -2y' + A* ' - B* + O(y -12 ) 

- 3-y'1- C*' y' + D* + O(ye-1/2) 

where 

A* =4b+22a, B* = la 2 + b2 + 22ab + 3/32, 

C* 2(a2 + b), D* = 4(a2 + b2) + 3/16, 

a, b being as in (7.2). 

X 
28 

(4,2) 

-24 
X - CURVES 

C 2 

(2,0) / -20~~~~~~~~~~~~~~~(2I 

-20 

FIGU0) 128 

-16 ~ ~ IGR I1 ~ -0'4 2 1 
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(2,0) 

K0(4 1)( 4.12)(42)1)(QO ) -28 

--24 
,LL-CURVES 

2 2 
-20 

-16 

-12 

-8 

4 

-28 (4,2) (2,0) 
(4,1)(4,0X2,I) 

FIGuR,E 2 

[Note. In the diagrams, the eigenvalue curves have been numbered to match the 
corresponding ellipsoidal wave functions uelo, uelo, uell , uel', uell , uel2, the lower 
index being 2n rather than n.] 

8. Other Forms of the Equation; Solution by Trigonometric Series or Neumann 
Series. An interesting version of the ellipsoidal wave equation, and one which may 
prove computationally useful, is obtained by putting 

(8.1) am z = v sn z = sin v t = sin2 v 

in (2.1), (2.4), giving the "trigonometric form" 

2 2 d2w 2 dw 
(8.2) (1 -k2sin2v) 2 -k2sinvcosv - 

dV 2 dv 

-(a + bk2sin2 v + qk4 sin4 v)w = 0 

or, using multiple angles, 

(8.3) ( 1-2 2 + 2 k2 cos 2v -k2 sin 2v+ 

+ (R + Scos2v + Tcos4v)w 0 , 
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where 

-R = a +bk2 + qk4, S l k2(b + qk2) T= qk4 
2 2 8 

We now seek to solve this by a trigonometric series; the form which corresponds 
to a uel-function is a series of even cosines 

I X0 
(8.4) w= c + crcos2rv. 

Substitution in (8.3) yields a five-term recursion: 

(8.5a) Rco + (S - k2)c1 + Tc2 0, 

(8.5b) SC + T + R-4(1-Ik2 C + ( S-3k 2 C + ITC = O 

(8.5c) 
I 

TC-2 +r lS- (r- )(r- I )k2jc +[R-4r2(i- I k2fCr 

2 - - r>2 

+ S - (r+ I)(r + 
I 

k 2 Cr+I + 
I 

Tcr+2 = 0 r >-2 

The fact that we have five terms instead of four in the recursion may be 
compensated by the symmetries in (8.5c). These series were first considered by 
Campbell [8]. 

A similar analysis to that of Section 5 shows that, as r -x 00, the ratio cr+l/cr 
must have one of the asymptotic forms 

(8.6) 2k 2 1 + k' 1- k' T -2 
T i1-k'' 1+k' 2k 2 

and clearly the numerical treatment must be such as to pick out the solution which 
has the last-mentioned behavior. 

Mention should also be made of another possible mode of solution, namely the 
use of Neumann series (i.e., series of Bessel functions). Such series again lead to 
five-term recursion relations; details are given in [4]. 

9. The Other Types of Ellipsoidal Wave Function. The exposition in this paper has 
concentrated on only one of the eight types of ellipsoidal wave functions, but in fact 
the other seven types seem to be amenable to the same treatment. 

Referring to (3.1) and (3.2), the eight types are distinguished by the eight 
combinations of values 0, 1 taken by p, a, T. The standard notation [2], [3] is to use 
the general symbol el(z) and prefix the letters s, c, d according to the occurrence of 
the extraneous factors sn z, cn z, dn z in the representation (3.1) (or u, for unity, if 
there are none such). Thus the eight types are written uel, sel, cel, del, scel, sdel, cdel, 
scdel, with suitable suffixes. 

For the purposes of this paper it is more convenient to take the solutions in the 
form (3.1). By tedious working we find that the differential equation to be satisfied 
by G(t) has the form 

(9.1) t(t - 1)(t - c)G"(t) + 
I 

(At2 -2A t + AO)G'(t) 

+ (X-X x+ (t + [o)t + yt2)G(t) = 0, 
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where the values of A2, A1, A0, X L ,0 are as follows 

Function type p U T A2 AI A0 Xo tL o 

uel 0 O 0 3 1 +c c 0 0 

sel 1 0 0 5 2 + 2c 3c -(I +c) 2 

4 2 
cel 0 1 0 5 1 + 2c c 1C 

4 2 
del 1 O 1 5 2 + c c 1 3 

4 2 
scel I I 0 7 2 +3c 3c I+ c 

3 

1 3 
sdel 1 0 1 7 3+2c 3c 1+-c 

3 
4 2 

cdel 0 1 1 7 2 + 2c c I(1 + c) 
3 

scdel 1 1 1 9 3 + 3c 3c I + c 3 

Specifically 
A2 = 2(p + J + T) + 3, 

Al - (1 + p)(l + c) + T + UC, 

AO (2p + l)c, 

4A - (p + )2 + (p + )2C 

4Mo = (p + u + T)(p + U + T + 1). 
When Eq. (9.1) is solved formally by a series 

(9.2) G(t) --Y,a,rt, 
0 

then the recursion (corresponding to (5.3)) is 

(9.3) yrar+[ii+i0 + (rt+ 1)(r+ 4IA4jr? 

+[- - (r + 2)(Al + (r + 1)(1 + C))Irr+2 

+ (r + 3)4(r + 2)c + {AOIar+3 0. 
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